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Analytical calculation of the amplification and angular divergence of the stimulated
backscattered light from a Gaussian hot spot
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The problem of backscattering instabilities from a single laser hot spot is considered analytically in the
frame of the paraxial approximation. An analytical calculation of the convective gain and of the far-field
angular divergence of the backscattered light is presented for both homogeneous and inhomogeneous plasmas.
It is shown that the far-field angular divergence is determined by the propagation of the backscattered light not
only within the amplification region but alsoutsideit, where the coupling is very weak. For homogeneous
plasmas, the far-field angular divergence computed at the end of the interaction region is always less than what
it would be if it were computed at the end of the amplification region. For inhomogeneous plasmas, both the
power and the far-field angular divergence of the backscattered beam depend on the sign of the inhomogeneity
gradient.[S1063-651X98)10308-3

PACS numbsgs): 52.40.Nk, 52.35.Mw, 52.35.Nx

I. INTRODUCTION vergence of the backscattered light in the far-field zfBle
This paper is devoted to revisiting this problem analytically
Much experimental and theoretical work has been defor anyvalue of the interaction length andthoutneglecting
voted to the study of backscattering instabilities from opti-the longitudinal dependence of the coupling between the
cally smoothed laser beams. In the case of spatiallyjaughter waves. We show that for a long enough interaction
smoothed beams, such as random phase (R beams, regjon, the coupling outside the amplification region can sig-
these instabilities develop in many small scale hot spats pjficantly modify the phase structure of the backscattered
speckleg randomly distributed in the interaction region. The beam, although it is negligible for what concerns the ampli-
regimes currently of pratical interest correspond to situationgication. As a result, the far-field angular divergence of the
where the macroscopic reflectivity of the plasma is detery,cyscattered beam computed at the end of the interaction
mlngd by "?‘.feV.V hot spots of high intensity. In the;e régiMeS,agion can be significantly different from what it would be if
the instability is assumed to be properly described by th?t was computed at the end of the amplification region. We

so-called “independent hot spot moddlT] characterized by . . . i
(i) an independent description of the backscattering instabild ¢ EXPressions for the angular divergence of the backscat

ity from each single intense hot spot, afiid averaging over teredtllgk:; in the fl?“'f'fr:d zonelttha]:c sgf this effect into ac-
the hot spot intensity to obtain the overdthacroscopic count and generalize the results o :

reflectivity. Step(i) of this model can be carried out because In the first part of th? paper, we reconsiqer the same prob-
each hot spot of sufficiently high intensity can be approxi-lem as Eliseeet al.[4] in which the plasma is homogeneous

mated near its maximum by given i.e., nonstochastic, in- and the longitudinal erenQence of the coupl_ing reduces to
tensity profile [2]. This intensity profile(e.g., that of a that of the hot spot intensity. In Sec. Il we introduce our
Gaussian beam near the focal pq"dePends on the geom- theoretical model. In Sec. Il we solve the prOblem of the
etry of the RPP elements and is the same for each hot spd@_ropagation of the backscattered light through the interaction

A comprehensive theory of backscattering instabilitiesregion and we give the expressions of the convective gain.
from a RPP field based on the independent hot spot modé&ection IV is devoted to the study of the the angular diver-
implies thus that one first studies backscattering instabilitiegence of the backscattered beam without assumingaany
from a single isolated hot spot. So far, most of such studiegpriori ordering between the interaction and the hot spot
have been done numericallg]. Recently, Eliseeet al. [4] lengths. In the second part of the paper, we reconsider the
and Tikhonchuk, Mounaix, and Pesiftg have analytically same problem as Tikhonchuk, Mounaix, and Peg$bBiein
studied the effects of diffraction on stimulated Brillouin scat- which the plasma is inhomogeneous and the longitudinal de-
tering from a single hot spot. Restricting themselves to thgpendence of the coupling is only due to the inhomogeneity.
case where the interaction length is much smaller than thin Sec. V we introduce our theoretical model. In Sec. VI we
hot spot itself, these authors have considered a simple modsblve the problem of the propagation of the backscattered
in which the spatial dependence of the speckle interfaitd,  light through the interaction region. Section VIl is devoted to
more generally, of the coupling between the daughter waveghe study of the convective amplification and the angular
is purely radial. In this limit, they have shown that diffrac- divergence of the backscattered beam. In Sec. VIl we com-
tion effects can significantly lower the Brillouin reflectivity pare our results with those of the simpler model where the
[4,5] and they have obtained expressions for the angular diongitudinal dependence of the coupling is neglected.
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Il. HOMOGENEOUS PLASMA: wherea, is the hot spot waist angk is the Rayleigh length
DESCRIPTION OF THE MODEL defined byzg=k,a3. In this paper we will restrict ourselves
f to the physical cases characterized by the ordesifigzy.

the following Eq.(4) will be referred to as a “Gaussian”
ot spot. Since, in the large amplification limit, one expects
gain narrowing to make the backscattered beam much more
localized transversally than the pump beam, one can expand
the Gaussian on the left-hand side of E4). up to the first

As in Ref.[4], we will restrict ourselves to a range o
parameters where neither self-focusing nor pump depletio
occur. We start from the standard wave coupling equation
in the linear regime, including diffraction terms in the
paraxial approximation

i order inx? . Defining thena, by
A+ vi+V, az—z—klvﬁ a;=vyoas+S;, (la -~
aj(w)=ai(w)exp(d),
G+ Vot Vs az+2'—kzvf a,=yat +S,. (1p  With
_ w(z=27) Yzr [, (7
Herea, anda, stand for the amplitude of the backscattered U= vV, Vi Vz_iw)[ta” Zn —tan Z_R> ;

and electrostatic wave, respectively. The incoming laser light

is assumed to propagate from right to left. The quantitiesyherez’ is an arbitrary point, one finds that the evolutigm
Va, v, andk, denote the group velocity, the linear damp- ,y t3 is given by a Sctidinger-like equation for a driven
ing, and the wave number of wawe, respectively(with 4 gimensional harmonic oscillator with a time-dependent

V;>0 andk,>0). The coupling constanf, is the linear  ,mpjex pulsation(here thez coordinate plays the role of
homogeneous growth rate of the instability. The source termﬁme)_ Namely, one obtains

S, are stochastic functions in space and time that account for

the thermal noise emission of each wave. In the following we

will take for S, a white noise in space and time with the i 52 2

statistical properties Jo—m — V2 + i = (o)
22kt Vi(v—io) a1+ (zzg)??)

VS (w)exp(—9)
(Su(X, ,Z,0)(SE)(X] ,2,®")) CVi(vo—iw)(1+iz/zg)°

<Sa(XL :Z!w)>:Oy

©)

— 3 2 ! - ’
(27)"2,6°(x. —x1)8(z=2) dw+ '), Ill. CONVECTIVE AMPLIFICATION

where the constar , is chosen such that one recovers the BY A GAUSSIAN HOT SPOT

equilibrium fluctuation level of waver when y,=0. Ne- To solve Eq/(3) one has therefore to determine the propa-

glecting both the inverse bremsstrahlung absorption and th&atorR of the left-hand side of Eq(5) defined as the re-
thermal noise emission of the electromagnetic wali®s,  (5.4ed golution to

v1=0 andS;=0), and considering the saturated convective
regime where the low frequency wasg is locally enslaved

to the electromagnetic wawg (i.e.,V,=0), one obtains the i 2 N
system 0,— =—V3+ r -
2k, Vi(vo—iw) ad[1+(z/zg)?)?
i -
htVy| d,— z—lef a1=7od; , (23 XK, (X, ,2,x] ,2")=0, (6)
(94 v2)an= ypa +S,. (2p  With lim,_, K, (x, ,z,x| ,z')=6%(x, —x|). Following the

method of Ref.[6] it turns out that an exact closed-form
Defining the Laplace transform as a(w) solution to Eq.(6) can be obtained fmalyticall(ycf. the ap-
=(2m) L[ jexpiwt)a(t)dt and neglecting the initial condi- Pendix. Transforming back t,=K, exp(®), one finds
tion terms, one can recast the syst&?e) and (2b) into the  that the full propagator of Eq3) is given by
equation
K(,U(XL ,Z,Xi yz,)
o i 2 |70|2

P I P NP AC AT
z Vl 2kl L Vl(VZ_i(l))

al("”‘m* kya(o)exdi wzr(z—7")IV,+G]

3 - 2imzgV1+72V1+7'2 sinh ¢)

ikl 2 ry! 2 '
Xexp 5 [OXT+ X "+ 2%, X ], (7)
275

with

2 2
| 7o(x.,2)|?= ? ex;{ o 1, 4

1+(2/zg)? ag(1+2%2f) wherez=2z/zg, and with
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G=Gg(w)[tan }2)—tan 1(7')], Rayleigh length for thew Eomponeni,a(w) =[2iGRr(w)
—112, and ¢ = a(w)[tan 1(z) —tan (z')].
a(w)cotl*( ¢)+z One can now compute the two-point correlation function
e~ e— at the end of the speckle centeredatO and extending from
1+2° —Zzy to +z; [i.e., the right-hand side of E@4) is multiplied
~ by H(zg— z?) whereH is the Heaviside step functigrFrom
_ a(w)coth ¢)—2' the solution to Eq(3) one obtains straightforwardly
1+2'2
—a(w) (a1(x, ,20)a] (X ,20)) = f lo(x X[ Zo)dw,  (8)

n: - - 1
sinh(¢) V1+z2\1+27'?
whereGr(w) = y?zg/V1(v,—iw) is the convective gain per with

o)(XL 1ZOIXL ,Z”)K:)(Xi 1201XI aZ”) ~
(X, X! ,Zg)= ————(2m)% f f — d?x"dz". 9
LA 140 V%( 2+V2) % 1472 L

In the large gain factor limit of practical interest, the behav-Integrating this quantity ovex, , it follows from Eq. (10)
ior of Eg. (8) is determined by the most unstable componenthat the convective gain for the backscattered power is given
o=0 and one haga;(x, ,zo)aj (X] ,zg))~lo(X, ,X] ,Zg). by
The z integration in Eq.(9) for I, can then be performed

. i . ; _4[ %o
using a steepest-descent method; one obtains Geon =4Ggtan ! Z) (11)
lo(X, X1 1Zo) . . 12 1
in the limit Re(po) =~ (4GR) Y4an 1(zo/zg)<1, and by
27235k, 8 L
~—exp:4GR tan (zp)] [ 2
voV1zZr(1+2p) Geony =4Grtan Zn —2Re ¢)
eXF{L(MoXﬁF#oXLZJFz%XL X0 |, 1 1 ZO) (12)
72 ~4Gg| 1— —=|tan | — 12
ZZR(1+ZO) R \/G_R Zr
10 o I
in the opposite limit Repg)~(4Gg)Yan Y(zy/zg)>1.
with The latter equatior{12), which can be rewritten a&g,,
=2G;p(1-Gr ¥, where G;p=2Gg tan *(z,/zg) is the
a? on-axis &, =0) one-dimensional gain for the amplitude,

mo=i[a coth(¢o) +20]— generalizes the results of R¢#] to an arbitrary value of the

2 sinf( o) Iml e coth do)] interaction lengtle,.
1l «a |2 1
=== , IV. ANGULAR DIVERGENCE
2|sinh( )| IM[ @ coth( ¢bo)] OF THE BACKSCATTERED BEAM
IN THE FAR-FIELD ZONE

and where all the functions &f z’, andw must be evaluated

atz=zy, 2'=—-2;5, andw=0. Namely,Gr=Ggr(w=0), a Assuming that forz>z; the backscattered light propa-

=a(w=0), and¢o=2a tan (zq/zg). gates in vacuum, one h&s the paraxial approximation
The validity domain of Eq(10) reads Bgtan (z,/zg)

>1, which follows from the large gain factor limit needed to SNt :J j VA

apply the steepest-descent method in @y (integrating first (lau(xi . 2>20)[% vac(XL =X, 12~ 20)

over x{ and making the change of variable

=tan Y(zy/zg), one is led to a simple exponential integra- XKJac X, = X[ ,2—20)
tion). Note that in this limit the backscattered beam is always x(ay(x! ,Zg)a% (X! ,Z))
more localized transversally than the hot spot itself, which e
justifies the expansion of the Gaussian in E4). a poste- X d?x! d?x! (13
riori. The quantityl o(x, ,X| =X, ,Zp) is proportional to the

backscattered intensity at the end of the interaction regionwith
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ik x?
2z

Ky
2imz

Kpac(X( ,2)=

ex;{ ,
and where the correlation functida,(x, ,zg)aj (X] ,zp)) is
given by Eq.(8). Again, in the large gain factor limit the
behavior of Eq(13) is determined by the most unstable com-
ponentw=0 and in the far-field regiom>z; one obtains

|

14

X2 (1+2Z3)[ 8o+ Re(po)]

alz? (85— |wl?

<|al(XL 12>ZO)|2>~eXp{ -

From this equation one finds that the angular spreading of

the backscattered beam is given by

b \/ 38| mol?
1— Y0 y
(1+25/23)[ 8o+ Re(uo)]

(19

where the angledy=ay/zg<<1 is the angular spreading of
the incident beam. In the limit (1/Ran (zy/zg)] 1<Gr
<(1/4)tan Y(z9/2)]1 "2, Eq. (15) reduces to

3 .
VaGy

in the limit Gr>maxX{(1/2)[tan Y(zo/zg) ] L
(L8 tan Y(z/25) 1 2,25/(223)} it reads

[ 2
01= 00GH*\ | ———;
1+23/2%

and in the limitz3/(2z3)> Gg> (1/2)[tan Y(zo/zg)] 7%, it
reduces to

1

0
®rtanY(zy /) 1%

0,1= (16)

17

01: 906&1/4. (18)

It follows from Egs.(16)—(18) that the scattering angle;

does not saturate at the same interaction length as the ampli:

fication itself. Indeed, while Eq$11) and(12) show that the
gain factor saturates a,~zg, it can be seen from Egs.

(16)—(19) that the scattering angle saturates at a much larger.

interaction lengttzy~ zr(2GR) ¥%>z5 . This important result
comes from the fact that far behind the amplification region
i.e., for zs(2GR) Y%= zy= 1z, the very low hot spot intensity

can still significantly modify the phase structure of the back-

scattered beanfalthough it is negligible for what concerns
the amplification. As a result, the far-field angular diver-
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Gk = 5 to 20

01/6¢

Zy/Zr

FIG. 1. Backscattering far-field angular divergertge(normal-
ized to the angular spreading of the incident be#gnas a function
of the interaction half-lengtla, (normalized to the Rayleigh length
zg) for Gg=5, 10, 15, and 20, respectively, from bottom to top on
the left-hand side of the figure.

angular divergencé, as a function of the interaction length
for different values of the gain fact@®y.

It is possible to explain this result in terms of propagation
through a Gaussian aperture. Following Siegrfigh it can
be seen from Eq6) that the plasma acts locally as a lens of
radius rp=a0(1+'22)/G%{2 and (imaginary focal length
izg(r,/ap)%. Whenr,<r 4, wherer ,=ao[ (1+2%)/G§*]"?
is the radius of the backscattered befeh Eq. (10)], one
expects the coupling to modify the curvature of the backscat-
tered light phase plandse., to have an optical effectAt
the end of the amplification regiorg=zz, one hasr,
~r4/GR* and the plasma is still acting as a lens. At
=2zx(4GR)"*, one hasr,=r, and 6;~ 6,. Finally, for z
~2zzGR?, one hag ,>r, andd,~ 6,Gz™*: the effect of the
coupling becomes negligible. While the characteristic length
for the amplification is given byg, the characteristic length
for optical effects(i.e., phase effectsis given by GHzg
>7n.
This result is particularly important for the interpretation
of the numerical simulations of backscattering instabilities
from a single hot spot. The fact that the simulation box is
long enough to include the amplification region is not suffi-
cient to ensure that the far-field image of the backscattered
beam does not depend on the length of the box. Our results

'show that forzo=<zx(2Gg)*? it is only if the length of the

simulation box is equal to the actual interaction length that
numerical far-field diagnostics can be compared to experi-
mental results straightforwardly.

gence of the backscattered beam computed at the end of the

interaction region is always less than what it would be if it
were computed at the end of the amplification region. For
example, it is interesting to notice that although the backscat-

tered beam is always more localized transversally than thgwthin the same approximations as in Sec. I, one finds that
h

pump beam in the amplification region, its angular spreadin
in the far-field zone can bkessthan the pump divergence.
From Eq.(17) and the validity conditionGg>1 one finds
that this effect occurs if the inequalitgy>zg(2G K>~ 1)Y2
~zx2Y%GH* is fulfilled (i.e., the interaction region must be
long enough Figure 1 shows the backscattering far-field

V. INHOMOGENEOUS PLASMA:
DESCRIPTION OF THE MODEL

We now consider the case of an inhomogeneous plasma.

e convective amplification of the backscattered light can be
described by the system

FRRVA V2 (199

— *
a;=yod, ,

i
0,— 2_k1
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z
ot v, l—isz— a2=yoa’1*+82, (19b)
C

with e =sgn(V,«’) and wherez.= v, /|V,«'| is the inhomo-
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VI. CONVECTIVE AMPLIFICATION BY A CYLINDRICAL
INHOMOGENEOUS HOT SPOT

Following as previously the method of R¢€], one finds
that the propagatoK, of the left-hand side of Eq(22),

geneous amplification length in the strongly damped limitgefined as the retarded solution to

[8]. The inhomogeneity is taken into account in the WKB
approximation by the quantityc’=(d/dx)[kq(x)—k;(X)
—k5(X) ]x=0, Wherek,(x) is the local wave vector of wave
a associated with the resonance condition that is assumed
be fulfilled atx=0, so that[kg(x) —ki(X) —k2(X) ]x=0=0.
Laplace transforming in time systeid9) and neglecting the
initial condition terms, one obtains the equation &r

i
Vo 2k

o 2 |'}/O|2

L Vyv(l-iwlvy,tiezlz,)

Y0(S3) ()

TV (l—iwlvytiezlzy)

9,

()

(20

In the following we will restrict ourselves to the cases where

the plasma length ) is smaller than the Rayleigh length
Zr. It will be seen in Sec. VIII that in this limit one can

neglect the longitudinal dependence of the hot spot intensity

and replace Eq4) by

2

X
| vo(x, ,2)|*=H(z5—2%)¥? exr{ Y
0

(21)

from which it follows that the longitudinal dependence of the
coupling is now only due to the inhomogeneity. Expanding
then the Gaussian on the left-hand side of &4) up to the

first order inx? and defininga, by

() =ay(w)exp(d),

with

io(z—2') iey’z. 1+i(ezlze— wlv,)
= - In— ,
\ Vive 1+i(ez' 1z~ wlvy)

wherez’ is an arbitrary point, one finds again that the evo-
lution (in z) of a, is given by a Schidinger-like equation for
a driven two-dimensional harmonic oscillator. Namely,

2 Y

LT Viv(1-iolvytiezlz) a2

Y(S;)(w)exp(— )

:Vlyz(l_i(l)/yz+i82/zc) '

2
X\ |~

(o)

i
d,— 2_|(1V

(22

Kol

whereG = y?z./(V1v,) and a=(2iGz./z5

,},2

Vivy(1-iolvy+iszlzy) a2

. 2
i X1

R v 2]
T

!

with lim,_, K ,(x, ,z,x| ,z')=8%(x, —x|), can be obtained
analytically in terms of ordinary Bessel functiofisf. the

appendiy. Transforming back tK =K exp(d), one finds
that the full propagator of E20) is given by

to

xK,(x, ,z,x ,2')=0, (23

Ko(X,2,X] ,2")

kiexdinz(z—7')IV,~ip+G]

2imz.F(z,2')
ikl 2 1! 2 ’
xXex E[gXL+§ X +277XL'XJ_] , (24)
c
where EZZ/ZC, yEy(E,w):[1+i(SE_w/VZ)]ﬂZ, y'

=y(z',w), and with

1+ (e2— wlvy)?

eG,
= In = 5
1+(eZ2' —wlvy)

2

¢

|

G=GJ[tan Yz—ew/v,)—tan (7' —cwlv,)],

iea Jy(2ay’)Yo(2ay) = Yi(2ay')Jo(2ay)
Y Yi(2ay')Ii(2ay)—Ji(2ay’)Y1(2ay)’

_iea Yo(2ay')dy(2ay) — Jo(2ay’) Yi(2ay)
y' Yi(2ay')31(2ay)— Iy (2ay") Y1 (2ay)’

1

F(z,z")

==

F(z,2')=imeyy'[Y1(2ay') I (2ay)

—J1(2ay")Y1(2ay)],
)1/2_

The two-point correlation function at the end of the
speckle is again given by E) where the spectral density
I (X, ,X] ,Zg) reads now

" " * ! " 1"
X| ,Z9,X] ,Z")KG (XL ,Z9,X] ,Z") _
- d?xdz’,

’ ,yZZC 3 NZO
lo(X X[ ,20)=—5—(2m)°2, | | -
Vivy X v "%

(25

[1+(E”—8w/v2)2]



2466 LAURENT DIVOL AND PHILIPPE MOUNAIX PRE 58

where the propagatdt (X, ,Zg,X| ,2") is given by Eq(24). 1 3
As previously, in the limit of a large amplification, we can 01=10q AT
restrict ourselves to the most unstable componest0, so (20/2r) R

that(ai(x, ,zp)as (x| ,zg))~1o(X, ,X] ,Zo). Performing then
the integrations over” in Eq. (25) using a steepest-descent
method, one obtains

and in the opposite limizy>z. one finds

b— o 1 (zrlze) 29
=6, )
, 27T222k150 ' (ZO/ZR)l/Z \/4GR
lo(X, , X, ,Zo)ww
2715 These results will be compared to those of the simpler cylin-
X ex 4G tan 1(Z,)] drical model, where any longitudinal dependence of the cou-
¢ pling is neglected, in Sec. VIII.
Ky 2 * ! 2 ’
X eXp{Z—ZC(MoXL T mo XL T+ 280X, - X1) |, B. |2ay,|>1: Reduction of the amplification
(26) due to transverse effects
In the opposite limit
with
ZR
2 maxzg,z)> 8G,’
Mo=i18o— NG ) ]
21m(&o) one can replace the Bessel functions by the leading term of
their asymptotic expansion. A careful study of integi2t)
| 702 shows that the most important contribution comes from the

= —, vicinity of z=—z, for e=—1, and from the vicinity ofz
21m(Zo) =max —2zy,— z(Gr/2)*®] for e=+1. Accordingly, in the
cases = + 1, the validity of Eq.(26) is limited to the domain

0

where the subscript “0” means that the quantities’, and

7 must be evaluated at=z,, z'= —2z,;, andw=0. The va-

lidity of Eq. (26) will be discussed in Sec. VII B. Zp<Z;
Following the calculation of Sec. IV, one can readily ob-

tain from Eqs.(8) and (25) the general expression of the  The last condition that remains to be checked is that the

far-field angular divergence of the backscattered light in anadius of the backscattered beam is smaller than that of the

G 1/3

5 (29

inhomogeneous plasma, one finds pump beam in order for the parabolic approximation of
exp(—r%ad) to be valid. From Eqs(25) and (24), one finds
[ zg 53— | wol? that the region of the sources that contribute significantly to
01= 6o Zo) 8o+ Re( o)’ (27 the backscattered beam is located at the entrance of the in-

teraction region and has a radius & {k;)¥3Im(¢g)| Y2

This result will be discussed in the next section where théOn the other hand, from E@26) one finds that the radius of

far-field angular divergence of the backscattered beam ithe backscattered beam at the end of the interaction region is

given in the two limits|2ay,| <1 and|2ay,|>1. given by (z/k;)IRe(uo)| M7= (zc/ky) YAIm(&o)| Y2
Demanding that these radius be smaller tagand using the

VII. AMPLIFICATION AND FAR-FIELD relation zg=k;ay, one obtains the condition

ANGULAR DIVERGENCE

R_: ’
A. |2ayy|<1: No modification of the amplification Z—len(|lm(§0)| Im(o))>1.
due to transverse effects
This inequality ceases to be satisfied either at the front side

In the limit |2ay,|<1, which can be written as ] _ -
[Im(ZY)|<]|Im(&)], or at the back side[|Im(Z))]

ZR >|Im(¢,)] of the hot spot, depending on the signafin
maxzo,ze)< o=, both cases it reads
8G,
1/2
one can expand the Bessel functions in a power series of ZGCZR) sin Z_Etanfl @)
ayo. One then finds that the prefactég on the right-hand Zo 4 2 Zc
side of Eq.(26) does not yield any exponential contribution 12 2\ L2112
o - . . . Grz Z
to the amplification. It follows that there is no diffraction :( R C) _ 0 -1
effect on the usual one-dimensional convective dag,, Zg z§+ zé

=4Gtan }(z,/z) in this limit. For what concerns the an-

gular divergence in the far-field zone, one obtains the twavhich reduces to Eq29) in the limit zy>z,. We therefore
following asymptotic resultsi) in the limit zg/(2Gg)<<zy,  conclude that in both cases==*1 and in the limitzp>z.,
<z. one recovers the homogeneous result of @6), the validity of Eq.(26) reduces to Eq(29).
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FIG. 2. Dissymetry of the backscattered power as a function of FIG. 3. Backscattered beamwidth at the end of the interaction
the interaction half-lengthz, (normalized to the amplification region in an inhomogeneous plasma as a function of the interaction
length z;), depending on the sign of the gradient in an inhomoge-half-lengthz, (normalized to the amplification length). Curves
neous plasma. The thick line corresponds to the analytical result Edabeled €)b correspond to the analytical results of Sec. VI depend-
(31). Curves(1) and(2) correspond to numerical solutions to Egs. ing on the sign ok. Curves labeled«)a correspond to numerical
(22) and (20) (keeping the Gaussian couplingespectively, with  solutions to Eq(20) (keeping the Gaussian couplinghe param-
G.=20 andzz/z,=5. The vertical dashed line shows the limit of eters are the same as in Fig. 2.
validity (29) of Eq. (26) as explained in the text.

The angular divergence of the backscattered beam in the

Unlike the first case VII A, there is now a diffraction ef- far-field zone depends also on the signeofin the limit z
fect on the usual one-dimensional convective gain due to th&Zo<2(Gr/2)"?, one finds
fact that the prefactos, on the right-hand side of Eq26)
yields an exponential contribution to the ampilification. In the 0,= 60\/§G§{4(
validity domain(29), one finds that the convective gain fac-
tor for the backscattered power is given by

el
%) . (32

C

This dependence on the sign of the inhomogeneity gradi-
12 72 ent can be explained in terms of propagation of the backscat-
Z0 2G.z:\ Y z tered light through a Gaussian dy@i. Locally the plasma
— |4 Zr I+ -1 . can be regarded both as a Gaussian aperture acting like a lens
¢ (30)  of imaginary focal lengthizo(1+7%)/G, and an ordinary
lens of focal lengthf=cz.(1+7%)/(zG,). If e=—1, the

It is worth noticing that expressiof80) is the same foe=  plasma acts as a converging lerfs>0) before the maxi-
+1. On the other hand, since the local radius of the backmum amplification region |¢/z;|<1), and as a diverging
scattered beamz(/k;)Y4Re(uo)| 2 does depend on the lens (f<0) after the maximum amplification regiafzon-
sign of £, one is led to the remarkable result that the back-versely ife =+1). The backscattered light produced before
scattered poweP,,; depends also on the sign ef One the maximum amplification region is therefore more concen-

Geomy =4Gtan™ !

C Z

finds, namely, trated on the axis when it reaches this region, which in-
creases the reflectivity in this case. Since the situation is
B 5 2]~ 12 opposite fore=+1, the reflectivity is greater foe=—1
Pscafe=+1) _ 142505591, % (31  than fore=+1. After the maximum amplification region,
Pscale=—1) z§ Z: Z. ' the diverging effect {<0) widden the backscattered beam

in thee=—1 case. The radius of the backscattered beam at
the end of the interaction regiorz< zp) is thus less fore

s +1 than fore=—1, and, due to diffraction, the far-field
(ivergence ar>z, is greater fore=+1 than fore=—1.
Figure 3 shows the backscattered beam width at the end of
the interaction region as a function of the interaction length.

which reduces taz,/(2Y%z5)<1 in the limit zo>z,. We
have compared these analytical results to numerical solutio
of Eq. (22) and Eq.(20) [i.e., without expanding the Gauss-
ian in Eq.(21)] in which the instability grows from a con-
stant boundary condition a=—z;, (cf. Fig. 2. It can be
seen that the dissymetry of the backscattered power is

slightly more pronounced when one keeps the Gaussian couY!!l: COMPARISON WITH THE CYLINDRICAL MODEL

pling [curve (2)] as compared to our analytical prediction. ¢ is interesting to compare the previous results with the
This is due to the fact that the= —1 backscattered beam is gnes optained in the case of a “cylindrical” hot spot of
wider than thee =+ 1 one after the maximum amplification lengthL for which Eq.(4) is replaced by

region (see the discussion at the end of this segtiarhich

leads to a slight underestimation Bf.,{(e = —1) when one X2

replaces the Gaussian coupling by its quadratic approxima- |vo(X, ,2)|?=H(L?%4— zz)yzexr{ - —l] (33

. 2
tion. 2h)
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FIG. 4. Backscattering far-field angular divergerge(normal- FIG. 5. Hot spot convective gain in the case of an inhomoge-

ized to the angular spreading of the incident bezynas a function neous plasma as a function of the interaction half-lerggtiinor-

of the interaction half-lengt, (normalized to the Rayleigh length malized to the amplification length;). The solid line shows the

zr) for Gg=5. The solid line corresponds to E@5) in which the  analytical resul(30) in which thez dependence of the coupling is

z dependence of the hot spot intensity is kept. The dashed linkept. The dotted line is the cylindrical model result of Ré&fl. The

corresponds to the “cylindrical model” result of Refel] and[5]. dashed line corresponds to a numerical solution to (). (with
Gaussian coupling the parameters are the same as in Fig. 2.

The latter expression corresponds to the simple model con-

sidered by Eliseeet al.[4] and Tikhonchuk, Mounaix, and backscattered light from a Gaussian hot spot by considering

Pesmd5]. In this case the convective gaBy,,,, iS given by — an effective cylindrical hot spot of the same gain.

Egs. (11) and (12) in which 2 tan 1(zy/zg) is replaced by In the case of an inhomogeneous plasma, one cannot re-
T=L/zx, and the ratiod, /6, is given by Eq.(15) in which ~ COVer the exact value of the convective gain from an effec-

one setszo =0 and redefines the quantitiesand ¢, as 'ivgz ta(r?’llli?g ri/(;a; Cgr?:parizZOtEQ(Gso(;) anlcei r:%:eh cci_nT/(Ia_gtfi{/e
— (9 1/2 — 7 [ 1) << = <&4e 0/%c)-
=(2iGp) and ¢o=al. In the limit 1/(2A)<Gg gain given by the cylindrical model, one finds that the latter

<1/(2L?) one obtains gives a good approximation of E¢BO) only if
Geon=2GgL, (34) 212 [T 22— 1)1 .

L 5 tan 1(z9/z.) '
01= 0oz, \ G B39 which is fulfilled as long ag,/z,<2.5 (cf. Fig. 5. It fol-
lows, in particular, that the cylindrical approximation breaks

dinth ite limiGos 1(20) (2?7, h down in the limit of strongly inhomogeneous plgsmas where
and in the opposite [imig>max1/(2L), 1/(2L7)], one has one haszy/z.>1. For what concerns the far-field angular

1 divergence of the backscattered light, one has, in the strongly
Geon~2GgL| 1— ?R) ' (36)  inhomogeneous plasma lind/z.>1,
6, = 1 1.14 L a8
01: 0021/261/4, (37) alcyl - 241/2 (ZOIZC)1/2_ (ZO/ZC)1/2< ( )
[i.e., one recovers the angular spreadii@ with Z3<zgl- i the casd2ay,|<1, where there is no diffraction effect on
These results are in agreement with those of Réfsand[5]  the amplification(cf. Sec. VII A), which corresponds to case
obtained in the limit of a small interaction regidn<zy . | of Ref. [5], and
In the case of a homogeneous plasma, it can be seen from
Egs.(34),(36), and Eqgs(11),(12) that one can easily obtain 0, [2zp\ =14
the proper value of the convective gain of a Gaussian hot O1ey) = Z_c (39

spot by considering an “effective” cylindrical hot spot of
length L=Ley=22zg tan '(zy/zg). On the other hand, it in the opposite limi{2ay,|>1 where diffraction effects re-
follows from Eqgs.(35),(37) and Eqs(16)—(18) that the far-  duce the amplificatioficf. Sec. VII B), which corresponds to
field angular divergence of the backscattered light from thisase Il of Ref[5]. In these equationg, and 6, . are, respec-
effective cylindrical hot spot always overestimates the actuagively, given by Egs.(28) and (32), and f1cy1 denotes the
angular spreading. In the case of a cylindrical hot spet, angular spreading obtained from the cylindrical model of
saturates afl; = 0,2Y2GR*> 6, (cf. Fig. 4, while in the case  Ref. [5]. It can be seen that, in the strongly inhomogeneous
of a Gaussian hot spot it saturatesfat= 00651’4, which is  plasma limitzy/z.>1, the cylindrical approximation does
less tharg,, for zy>zg(2Gg) 2 It is only if zy<zg that one  not yield the proper far-field angular divergence of the back-
can properly estimate the far-field angular divergence of thecattered lightcf. Fig. 6).
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12 F I = terms of its near-field structure.
We have then compared our results to previous ones ob-
10k . tained in the case of a cylindrical hot spot. For homogeneous
plasmas, we have found that the far-field angular divergence
- g ! - of the backscattered light can be properly estimated by con-
=3 sidering an effective cylindrical hot spot of the same gain in
@ 6 _M the limit zy=<zg only. For inhomogeneous plasmas, we have
o found that the cylindrical model always overestimates the
sl \"\ . on-axis linear convective gain factor, and that this model
TS~ e—— e __ breaks down in the limizy>z, where the plasma is strongly
» | | O] inhomogeneous.
1 2 3
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APPENDIX: DERIVATION
OF THE GREEN’'S FUNCTIONS

In this appendix we show how to calculate the propaga-
tors (7) and (24). The problem reduces to find the Green’s

IX. CONCLUSION function G(x, ,z,x] ,z") defined as the retarded solution to
In this paper we have studied the problem of backscatter- ) 152
ing instabilities from a single laser hot spot in the frame of ' w2 X1 2 1oy —
. L d,— =—Vi+——=0q(2)°|G(x,_,z,x; ,2")=0, (Al
the paraxial approximation. We have performed an exact Z 2k, g ag a(2)%| GOy 1:2') (A1)

analytical calculation of the convective gain factor and of the
far-field angular divergence of the backscattered light in theyith lim, ., G(x, .z,x,,z')=8%(x, —x!). Following the
two cases of homogeneous and inhomogeneous plasmas. method of Ref[6], one has

In the case of homogeneous plasmas, where the longitu-
dinal dependence of the coupling reduces to that of the hot ky iky .,
spot intensity, we have obtained expressions for the convec-G(x, ,2,x;,2")= = por. exr{ﬁ(fo—Zxeﬁ—gxiz)},
tive gain factor that generalize those of Elisezhal. [4] to (A2)
the case of an arbitrary value of the interaction length. We
have shown that the far-field angular divergence is deteryhere dot means derivative and the functiont andg are
mined not only by the amplificatiowithin the hot spot but  go|utions to
also by the propagation of the backscattered llggtiindthe

amplification region, where the hot spot intensity is negli- 9

gible for what concerns the amplification. We have found f= ﬁq(z)zf,
that the far-field angular divergence of the backscattered GR

light computed at the end of the interaction region is always f(2')=0

less than what it would be if it was computed at the end of
the amplification region. For a long enough interaction re- )
gion, namely, forzy/zg>2YGH* with Gg>1, it is even f(z')=1,
found to belessthan the pump divergence.

In the case of inhomogeneous plasmas, where the IongfJlnd
tudinal dependence of the coupling is only due to the inho-

mogeneity, we have obtained expressions for the convective 9= iq(z)zg
gain factor and for the far field angular divergence of the lezr ’
backscattered light. In the Ilimit of practical interest

max(,z)>7x(8Gy) 1, with z,<z.(Ggr/2)'3, G.>1, and g(z')=1,
Ggr>1, we have found that both the power and the far-field

angular divergence of the backscattered beam depend on the g(z')=0,

sign of the inhomogeneity gradient. This remarkable result
follows from focusing or defocusing optical effects occuring with z,=k,a2.
outsidethe resonance region, where the coupling is negli-
gible for what concerns the amplification.

It is worth mentioning that all these results should be
taken into account in the interpretations of numerical and/or In the case of a Gaussian hot spot in a homogeneous
experimental far-field images of the backscattered beam iplasma considered in Sec. Ill, one hag(z)=[1

1. Gaussian hot spot in a homogeneous plasma
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+(Zz9?) 7 and Ig=V; (v,—iw)/y% It is then useful to
write f andg as exg*k(z')dz, which yields a Riccati equa-
tion for Kk,

. 2i
k+ kZZﬁQ(Z)Z.
G4R

Inserting the expression @f(z) into this equation and trying
k(z)=(a+bz)/[1+(z/zg)?], one obtains the equation

) 2i
a“+b——
l6Zr

1
Z+ b( b— —2> 2220,

1
+2a( b— )
Zr

7R
the solution to which reads
a=*alzg,
b=1/73,
with a=(2izg/lg—1)¥2 One has, therefore,

1 Zlzg a 1
k(z)= *

i 1+(z/zg)? T zq 1+(z/zg)?’

and from the boundary conditions férand g, one obtains
straightforwardly

f=(zg/a)V1+(Zzg)°\N1+(Z'Izg)? sinh(¢),

(A3a)
. N1+(Z'zp)? z
f= W/ZR)Z cosh o)+ a—ZRSInf'( d)|, (A3b)
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V1+(2/zg)?] 7
g= W_COSN o) — a—ZRSIHV( #)|, (A3c)
where ¢=qatan (z/zg)—tan 1(z'/zg)]. Inserting Egs.

(A3) into Eqg.(A2) gives the solution to E(6), which yields
the full propagatoK7).

2. Cylindrical hot spot in a inhomogeneous plasma

In the case of a cylindrical hot spot in a inhomogeneous
plasma considered in Sec. VI, one hg&)=[1+i(ez/z
—wlvy)] Y2 15=V,v,/%?, and the equation fof andg
reads

2i
~—h=0,

1+i
lazZr

(A4)

V4 )\ |..
22

Z; vy

whereh denotesf or g. This equation can be solved explic-
itely in terms of ordinary Bessel functions. Defining
=q(2), y'=q(z'), and taking into account the boundary
conditions forf andg, one obtains

f=izemeyy'[Y1(2ay' ) h(2ay) —h(2ay')Y1(2ay)],

(A5a)
f=amy'[Yo(2ay)h(2ay')—h(2ay)Y(2ay")],

(A5b)
g=amy[Yo2ay')h(2ay)—J(2ay')Y(2ay)],

(A5c)

wherea=(2iG.z./zg)*2 Inserting Eqs(A5) into Eq. (A2)
gives the solution to Eq23), which yields the full propaga-
tor (24).
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