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Analytical calculation of the amplification and angular divergence of the stimulated
backscattered light from a Gaussian hot spot
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The problem of backscattering instabilities from a single laser hot spot is considered analytically in the
frame of the paraxial approximation. An analytical calculation of the convective gain and of the far-field
angular divergence of the backscattered light is presented for both homogeneous and inhomogeneous plasmas.
It is shown that the far-field angular divergence is determined by the propagation of the backscattered light not
only within the amplification region but alsooutsideit, where the coupling is very weak. For homogeneous
plasmas, the far-field angular divergence computed at the end of the interaction region is always less than what
it would be if it were computed at the end of the amplification region. For inhomogeneous plasmas, both the
power and the far-field angular divergence of the backscattered beam depend on the sign of the inhomogeneity
gradient.@S1063-651X~98!10308-2#

PACS number~s!: 52.40.Nk, 52.35.Mw, 52.35.Nx
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I. INTRODUCTION

Much experimental and theoretical work has been
voted to the study of backscattering instabilities from op
cally smoothed laser beams. In the case of spati
smoothed beams, such as random phase plate~RPP! beams,
these instabilities develop in many small scale hot spots~or
speckles! randomly distributed in the interaction region. Th
regimes currently of pratical interest correspond to situati
where the macroscopic reflectivity of the plasma is de
mined by a few hot spots of high intensity. In these regim
the instability is assumed to be properly described by
so-called ‘‘independent hot spot model’’@1# characterized by
~i! an independent description of the backscattering insta
ity from each single intense hot spot, and~ii ! averaging over
the hot spot intensity to obtain the overall~macroscopic!
reflectivity. Step~i! of this model can be carried out becau
each hot spot of sufficiently high intensity can be appro
mated near its maximum by agiven, i.e., nonstochastic, in
tensity profile @2#. This intensity profile~e.g., that of a
Gaussian beam near the focal point! depends on the geom
etry of the RPP elements and is the same for each hot s

A comprehensive theory of backscattering instabilit
from a RPP field based on the independent hot spot m
implies thus that one first studies backscattering instabili
from a single isolated hot spot. So far, most of such stud
have been done numerically@3#. Recently, Eliseevet al. @4#
and Tikhonchuk, Mounaix, and Pesme@5# have analytically
studied the effects of diffraction on stimulated Brillouin sca
tering from a single hot spot. Restricting themselves to
case where the interaction length is much smaller than
hot spot itself, these authors have considered a simple m
in which the spatial dependence of the speckle intensity~and,
more generally, of the coupling between the daughter wav!
is purely radial. In this limit, they have shown that diffra
tion effects can significantly lower the Brillouin reflectivit
@4,5# and they have obtained expressions for the angular
PRE 581063-651X/98/58~2!/2461~10!/$15.00
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vergence of the backscattered light in the far-field zone@5#.
This paper is devoted to revisiting this problem analytica
for anyvalue of the interaction length andwithoutneglecting
the longitudinal dependence of the coupling between
daughter waves. We show that for a long enough interac
region, the coupling outside the amplification region can s
nificantly modify the phase structure of the backscatte
beam, although it is negligible for what concerns the amp
fication. As a result, the far-field angular divergence of t
backscattered beam computed at the end of the interac
region can be significantly different from what it would be
it was computed at the end of the amplification region. W
give expressions for the angular divergence of the backs
tered light in the far-field zone that take this effect into a
count and generalize the results of Ref.@5#.

In the first part of the paper, we reconsider the same pr
lem as Eliseevet al. @4# in which the plasma is homogeneou
and the longitudinal dependence of the coupling reduce
that of the hot spot intensity. In Sec. II we introduce o
theoretical model. In Sec. III we solve the problem of t
propagation of the backscattered light through the interac
region and we give the expressions of the convective g
Section IV is devoted to the study of the the angular div
gence of the backscattered beam without assuming ana
priori ordering between the interaction and the hot s
lengths. In the second part of the paper, we reconsider
same problem as Tikhonchuk, Mounaix, and Pesme@5# in
which the plasma is inhomogeneous and the longitudinal
pendence of the coupling is only due to the inhomogene
In Sec. V we introduce our theoretical model. In Sec. VI w
solve the problem of the propagation of the backscatte
light through the interaction region. Section VII is devoted
the study of the convective amplification and the angu
divergence of the backscattered beam. In Sec. VIII we co
pare our results with those of the simpler model where
longitudinal dependence of the coupling is neglected.
2461 © 1998 The American Physical Society
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II. HOMOGENEOUS PLASMA:
DESCRIPTION OF THE MODEL

As in Ref. @4#, we will restrict ourselves to a range o
parameters where neither self-focusing nor pump deple
occur. We start from the standard wave coupling equati
in the linear regime, including diffraction terms in th
paraxial approximation

F] t1n11V1S ]z2
i

2k1
¹'

2 D Ga15g0a2* 1S1 , ~1a!

F] t1n21V2S ]z1
i

2k2
¹'

2 D Ga25g0a1* 1S2 . ~1b!

Herea1 anda2 stand for the amplitude of the backscatter
and electrostatic wave, respectively. The incoming laser l
is assumed to propagate from right to left. The quantit
Va , na , andka denote the group velocity, the linear dam
ing, and the wave number of wavea, respectively~with
V1.0 and ka.0). The coupling constantg0 is the linear
homogeneous growth rate of the instability. The source te
Sa are stochastic functions in space and time that accoun
the thermal noise emission of each wave. In the following
will take for Sa a white noise in space and time with th
statistical properties

^Sa~x' ,z,v!&50,

^Sa~x' ,z,v!~Sa* !~x'8 ,z8,v8!&

5~2p!3Sad2~x'2x'8 !d~z2z8!d~v1v8!,

where the constantSa is chosen such that one recovers t
equilibrium fluctuation level of wavea when g050. Ne-
glecting both the inverse bremsstrahlung absorption and
thermal noise emission of the electromagnetic waves~i.e.,
n150 andS150), and considering the saturated convect
regime where the low frequency wavea2 is locally enslaved
to the electromagnetic wavea1 ~i.e.,V250), one obtains the
system

F] t1V1S ]z2
i

2k1
¹'

2 D Ga15g0a2* , ~2a!

~] t1n2!a25g0a1* 1S2 . ~2b!

Defining the Laplace transform as a(v)
5(2p)21*0

`exp(ivt)a(t)dt and neglecting the initial condi
tion terms, one can recast the system~2a! and ~2b! into the
equation

F]z2
iv

V1
2

i

2k1
¹'

2 2
ug0u2

V1~n22 iv!Ga1~v!5
g0~S2* !~v!

V1~n22 iv!
,

~3!

with

ug0~x' ,z!u25
g2

11~z/zR!2
expF2

x'
2

a0
2~11z2/zR

2 !
G , ~4!
n
s

t
s

s
or
e

he

e

wherea0 is the hot spot waist andzR is the Rayleigh length
defined byzR[k1a0

2. In this paper we will restrict ourselve
to the physical cases characterized by the orderinga0!zR .
In the following Eq.~4! will be referred to as a ‘‘Gaussian’
hot spot. Since, in the large amplification limit, one expe
gain narrowing to make the backscattered beam much m
localized transversally than the pump beam, one can exp
the Gaussian on the left-hand side of Eq.~4! up to the first
order inx'

2 . Defining thenã1 by

a1~v!5ã1~v!exp~q!,

with

q5
iv~z2z8!

V1
1

g2zR

V1~n22 iv!F tan21S z

zR
D2tan21S z8

zR
D G ,

wherez8 is an arbitrary point, one finds that the evolution~in
z) of ã1 is given by a Schro¨dinger-like equation for a driven
two-dimensional harmonic oscillator with a time-depende
complex pulsation~here thez coordinate plays the role o
time!. Namely, one obtains

S ]z2
i

2k1
¹'

2 1
g2

V1~n22 iv!

x'
2

a0
2@11~z/zR!2#2D ã1~v!

5
g~S2* !~v!exp~2q!

V1~n22 iv!~11 iz/zR!
. ~5!

III. CONVECTIVE AMPLIFICATION
BY A GAUSSIAN HOT SPOT

To solve Eq.~3! one has therefore to determine the prop
gator K̃v of the left-hand side of Eq.~5! defined as the re-
tarded solution to

S ]z2
i

2k1
¹'

2 1
g2

V1~n22 iv!

x'
2

a0
2@11~z/zR!2#2D

3K̃v~x' ,z,x'8 ,z8!50, ~6!

with limz→z8K̃v(x' ,z,x'8 ,z8)5d2(x'2x'8 ). Following the
method of Ref.@6# it turns out that an exact closed-form
solution to Eq.~6! can be obtained analytically~cf. the ap-
pendix!. Transforming back toKv5K̃v exp(q), one finds
that the full propagator of Eq.~3! is given by

Kv~x' ,z,x'8 ,z8!

5
k1a~v!exp@ ivzR~ z̃2 z̃8!/V11G#

2ipzR
A11 z̃2A11 z̃82 sinh~f!

3expH ik1

2zR
@zx'

2 1z8x'8
212hx' .x'8 #J , ~7!

wherez̃5z/zR , and with
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G5GR~v!@ tan21~ z̃!2tan21~ z̃8!#,

z5
a~v!coth~f!1 z̃

11 z̃2
,

z85
a~v!coth~f!2 z̃8

11 z̃82
,

h5
2a~v!

sinh~f!A11 z̃2A11 z̃82
,

whereGR(v)5g2zR /V1(n22 iv) is the convective gain pe
v
en

to

a-
y

ic

io
Rayleigh length for thev component,a(v)5@2iGR(v)
21#1/2, andf5a(v)@ tan21( z̃)2tan21( z̃8)#.

One can now compute the two-point correlation functi
at the end of the speckle centered atz50 and extending from
2z0 to 1z0 @i.e., the right-hand side of Eq.~4! is multiplied
by H(z0

22z2) whereH is the Heaviside step function#. From
the solution to Eq.~3! one obtains straightforwardly

^a1~x' ,z0!a1* ~x'8 ,z0!&5E
v
I v~x' ,x'8 ,z0!dv, ~8!

with
I v~x' ,x'8 ,z0!5
g2zR

V1
2~v21n2

2!
~2p!3S2E

x'9
E

2 z̃0

z̃0 Kv~x' ,z0 ,x'9 ,z9!Kv* ~x'8 ,z0 ,x'9 ,z9!

11 z̃92
d2x'9 dz̃9. ~9!
ven

e,

-

In the large gain factor limit of practical interest, the beha
ior of Eq. ~8! is determined by the most unstable compon
v50 and one haŝ a1(x' ,z0)a1* (x'8 ,z0)&;I 0(x' ,x'8 ,z0).
The z integration in Eq.~9! for I 0 can then be performed
using a steepest-descent method; one obtains

I 0~x' ,x'8 ,z0!

;
2p2S2k1d0

n2V1zR~11 z̃0
2!

exp@4GR tan21~ z̃0!#

3expF k1

2zR~11 z̃0
2!

~m0x'
2 1m0* x'8

212d0x'•x'8 !G ,

~10!

with

m05 i @a coth~f0!1 z̃0#2
a2

2 sinh~f0!2 Im@a coth~f0!#
,

d05
1

2U a

sinh~f0!
U2 1

Im@a coth~f0!#
,

and where all the functions ofz, z8, andv must be evaluated
at z5z0, z852z0, andv50. Namely,GR[GR(v50), a
[a(v50), andf052a tan21(z0 /zR).

The validity domain of Eq.~10! reads 2GRtan21(z0 /zR)
@1, which follows from the large gain factor limit needed
apply the steepest-descent method in Eq.~9! ~integrating first
over x'9 and making the change of variableu
5tan21(z0 /zR), one is led to a simple exponential integr
tion!. Note that in this limit the backscattered beam is alwa
more localized transversally than the hot spot itself, wh
justifies the expansion of the Gaussian in Eq.~4! a poste-
riori . The quantityI 0(x' ,x'8 5x' ,z0) is proportional to the
backscattered intensity at the end of the interaction reg
-
t

s
h

n.

Integrating this quantity overx' , it follows from Eq. ~10!
that the convective gain for the backscattered power is gi
by

Gconv54GRtan21S z0

zR
D ~11!

in the limit Re(f0)'(4GR)1/2tan21(z0 /zR)!1, and by

Gconv54GRtan21S z0

zR
D22 Re~f0!

'4GRS 12
1

AGR
D tan21S z0

zR
D ~12!

in the opposite limit Re(f0)'(4GR)1/2tan21(z0 /zR)@1.
The latter equation~12!, which can be rewritten asGconv
52G1D(12GR

21/2), where G1D[2GR tan21(z0 /zR) is the
on-axis (x'50) one-dimensional gain for the amplitud
generalizes the results of Ref.@4# to an arbitrary value of the
interaction lengthz0.

IV. ANGULAR DIVERGENCE
OF THE BACKSCATTERED BEAM

IN THE FAR-FIELD ZONE

Assuming that forz.z0 the backscattered light propa
gates in vacuum, one has~in the paraxial approximation!

^ua1~x' ,z.z0!u2&5E
x'8
E

x'9
Kvac~x'2x'8 ,z2z0!

3Kvac* ~x'2x'9 ,z2z0!

3^a1~x'8 ,z0!a1* ~x'9 ,z0!&

3d2x'8 d2x'9 , ~13!

with
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Kvac~x' ,z![
k1

2ipz
expS ik1x'

2

2z D ,

and where the correlation function^a1(x' ,z0)a1* (x'8 ,z0)& is
given by Eq.~8!. Again, in the large gain factor limit the
behavior of Eq.~13! is determined by the most unstable com
ponentv50 and in the far-field regionz@z0 one obtains

^ua1~x' ,z@z0!u2&;expH 2
x'

2

a0
2z̃2

~11 z̃0
2!@d01Re~m0!#

~d0
22um0u2!

J .

~14!

From this equation one finds that the angular spreading
the backscattered beam is given by

u15u0A d0
22um0u2

~11z0
2/zR

2 !@d01Re~m0!#
, ~15!

where the angleu05a0 /zR!1 is the angular spreading o
the incident beam. In the limit (1/2)@ tan21(z0 /zR)#21!GR
!(1/4)@ tan21(z0 /zR)#22, Eq. ~15! reduces to

u15u0

1

@ tan21~z0 /zR!#3/2
A 3

4GR
; ~16!

in the limit GR@max$(1/2)@ tan21(z0 /zR)#21,
(1/4)@ tan21(z0 /zR)#22,z0

2/(2zR
2)% it reads

u15u0GR
1/4A 2

11z0
2/zR

2
; ~17!

and in the limit z0
2/(2zR

2)@GR@(1/2)@ tan21(z0 /zR)#21, it
reduces to

u15u0GR
21/4. ~18!

It follows from Eqs.~16!–~18! that the scattering angleu1
does not saturate at the same interaction length as the a
fication itself. Indeed, while Eqs.~11! and~12! show that the
gain factor saturates atz0;zR , it can be seen from Eqs
~16!–~18! that the scattering angle saturates at a much la
interaction lengthz0;zR(2GR)1/2@zR . This important result
comes from the fact that far behind the amplification regi
i.e., for zR(2GR)1/2*z0*zR , the very low hot spot intensity
can still significantly modify the phase structure of the ba
scattered beam~although it is negligible for what concern
the amplification!. As a result, the far-field angular dive
gence of the backscattered beam computed at the end o
interaction region is always less than what it would be if
were computed at the end of the amplification region. F
example, it is interesting to notice that although the backs
tered beam is always more localized transversally than
pump beam in the amplification region, its angular spread
in the far-field zone can beless than the pump divergence
From Eq. ~17! and the validity conditionGR@1 one finds
that this effect occurs if the inequalityz0.zR(2GR

1/221)1/2

'zR21/2GR
1/4 is fulfilled ~i.e., the interaction region must b

long enough!. Figure 1 shows the backscattering far-fie
of

pli-

er

,

-

the
t
r
t-
e
g

angular divergenceu1 as a function of the interaction lengt
for different values of the gain factorGR .

It is possible to explain this result in terms of propagati
through a Gaussian aperture. Following Siegman@7#, it can
be seen from Eq.~6! that the plasma acts locally as a lens
radius r p5a0(11 z̃2)/GR

1/2 and ~imaginary! focal length

izR(r p /a0)2. When r p<r f , wherer f5a0@(11 z̃2)/GR
1/2#1/2

is the radius of the backscattered beam@cf. Eq. ~10!#, one
expects the coupling to modify the curvature of the backsc
tered light phase planes~i.e., to have an optical effect!. At
the end of the amplification region,z5zR , one hasr p

'r f /GR
1/4 and the plasma is still acting as a lens. Atz

5zR(4GR)1/4, one hasr f5r p and u1'u0. Finally, for z
'zRGR

1/2, one hasr p@r f andu1;u0GR
21/4: the effect of the

coupling becomes negligible. While the characteristic len
for the amplification is given byzR , the characteristic length
for optical effects~i.e., phase effects! is given by GR

1/2zR

@zR .
This result is particularly important for the interpretatio

of the numerical simulations of backscattering instabilit
from a single hot spot. The fact that the simulation box
long enough to include the amplification region is not su
cient to ensure that the far-field image of the backscatte
beam does not depend on the length of the box. Our res
show that forz0&zR(2GR)1/2, it is only if the length of the
simulation box is equal to the actual interaction length t
numerical far-field diagnostics can be compared to exp
mental results straightforwardly.

V. INHOMOGENEOUS PLASMA:
DESCRIPTION OF THE MODEL

We now consider the case of an inhomogeneous plas
Within the same approximations as in Sec. II, one finds t
the convective amplification of the backscattered light can
described by the system

F] t1V1S ]z2
i

2k1
¹'

2 D Ga15g0a2* , ~19a!

FIG. 1. Backscattering far-field angular divergenceu1 ~normal-
ized to the angular spreading of the incident beamu0) as a function
of the interaction half-lengthz0 ~normalized to the Rayleigh length
zR) for GR55, 10, 15, and 20, respectively, from bottom to top
the left-hand side of the figure.
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F] t1n2S 12 i«
z

zc
D Ga25g0a1* 1S2 , ~19b!

with «5sgn(V2k8) and wherezc5n2 /uV2k8u is the inhomo-
geneous amplification length in the strongly damped lim
@8#. The inhomogeneity is taken into account in the WK
approximation by the quantityk8[(d/dx)@k0(x)2k1(x)
2k2(x)#x50, whereka(x) is the local wave vector of wave
a associated with the resonance condition that is assume
be fulfilled at x50, so that@k0(x)2k1(x)2k2(x)#x5050.
Laplace transforming in time system~19! and neglecting the
initial condition terms, one obtains the equation fora1

F]z2
iv

V1
2

i

2k1
¹'

2 2
ug0u2

V1n2~12 iv/n21 i«z/zc!
Ga1~v!

5
g0~S2* !~v!

V1n2~12 iv/n21 i«z/zc!
. ~20!

In the following we will restrict ourselves to the cases whe
the plasma length 2z0 is smaller than the Rayleigh lengt
zR . It will be seen in Sec. VIII that in this limit one ca
neglect the longitudinal dependence of the hot spot inten
and replace Eq.~4! by

ug0~x' ,z!u25H~z0
22z2!g2 expF2

x'
2

a0
2G , ~21!

from which it follows that the longitudinal dependence of t
coupling is now only due to the inhomogeneity. Expandi
then the Gaussian on the left-hand side of Eq.~21! up to the
first order inx'

2 and definingã1 by

a1~v!5ã1~v!exp~q!,

with

q5
iv~z2z8!

V1
2

i«g2zc

V1n2
ln

11 i ~«z/zc2v/n2!

11 i ~«z8/zc2v/n2!
,

wherez8 is an arbitrary point, one finds again that the ev
lution ~in z) of ã1 is given by a Schro¨dinger-like equation for
a driven two-dimensional harmonic oscillator. Namely,

F ]z2
i

2k1
¹'

2 1
g2

V1n2~12 iv/n21 i«z/zc!

x'
2

a0
2G ã1~v!

5
g~S2* !~v!exp~2q!

V1n2~12 iv/n21 i«z/zc!
. ~22!
t

to

ty

-

VI. CONVECTIVE AMPLIFICATION BY A CYLINDRICAL
INHOMOGENEOUS HOT SPOT

Following as previously the method of Ref.@6#, one finds
that the propagatorK̃v of the left-hand side of Eq.~22!,
defined as the retarded solution to

F ]z2
i

2k1
¹'

2 1
g2

V1n2~12 iv/n21 i«z/zc!

x'
2

a0
2G

3K̃v~x' ,z,x'8 ,z8!50, ~23!

with limz→z8K̃v(x' ,z,x'8 ,z8)5d2(x'2x'8 ), can be obtained
analytically in terms of ordinary Bessel functions~cf. the
appendix!. Transforming back toKv5K̃vexp(q), one finds
that the full propagator of Eq.~20! is given by

Kv~x' ,z,x'8 ,z8!

5
k1exp@ ivzc~ z̃2 z̃8!/V12 iw1G#

2ipzcF~ z̃,z̃8!

3expH ik1

2zc
@zx'

2 1z8x'8
212hx'•x'8 #J , ~24!

where z̃5z/zc , y[y( z̃,v)5@11 i (« z̃2v/n2)#1/2, y8

[y( z̃8,v), and with

w5
«Gc

2
lnF 11~« z̃2v/n2!2

11~« z̃82v/n2!2G ,

G5Gc@ tan21~ z̃2«v/n2!2tan21~ z̃82«v/n2!#,

z52
i«a

y

J1~2ay8!Y0~2ay!2Y1~2ay8!J0~2ay!

Y1~2ay8!J1~2ay!2J1~2ay8!Y1~2ay!
,

z852
i«a

y8

Y0~2ay8!J1~2ay!2J0~2ay8!Y1~2ay!

Y1~2ay8!J1~2ay!2J1~2ay8!Y1~2ay!
,

h52
1

F~ z̃,z̃8!
,

F~ z̃,z̃8!5 ip«yy8@Y1~2ay8!J1~2ay!

2J1~2ay8!Y1~2ay!#,

whereGc5g2zc /(V1n2) anda5(2iGczc /zR)1/2.
The two-point correlation function at the end of th

speckle is again given by Eq.~8! where the spectral densit
I v(x' ,x'8 ,z0) reads now
I v~x' ,x'8 ,z0!5
g2zc

V1
2n2

2 ~2p!3S2E
x'9
E

2 z̃0

z̃0 Kv~x' ,z0 ,x'9 ,z9!Kv* ~x'8 ,z0 ,x'9 ,z9!

@11~ z̃92«v/n2!2#
d2x'9 dz̃9, ~25!
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where the propagatorKv(x' ,z0 ,x'9 ,z9) is given by Eq.~24!.
As previously, in the limit of a large amplification, we ca
restrict ourselves to the most unstable componentv50, so
that^a1(x' ,z0)a1* (x'8 ,z0)&;I 0(x' ,x'8 ,z0). Performing then
the integrations overz9 in Eq. ~25! using a steepest-desce
method, one obtains

I 0~x' ,x'8 ,z0!;
2p2S2k1d0

n2V1zc

3exp@4Gctan21~ z̃0!#

3expF k1

2zc
~m0x'

2 1m0* x'8
212d0x'•x'8 !G ,

~26!

with

m05 i z02
h0

2

2 Im~z08!
,

d05
uh0u2

2 Im~z08!
,

where the subscript ‘‘0’’ means that the quantitiesz, z8, and
h must be evaluated atz5z0, z852z0, andv50. The va-
lidity of Eq. ~26! will be discussed in Sec. VII B.

Following the calculation of Sec. IV, one can readily o
tain from Eqs.~8! and ~25! the general expression of th
far-field angular divergence of the backscattered light in
inhomogeneous plasma, one finds

u15u0AS zR

zc
D d0

22um0u2

d01Re~m0!
. ~27!

This result will be discussed in the next section where
far-field angular divergence of the backscattered beam
given in the two limitsu2ay0u!1 andu2ay0u@1.

VII. AMPLIFICATION AND FAR-FIELD
ANGULAR DIVERGENCE

A. z2ay0z!1: No modification of the amplification
due to transverse effects

In the limit u2ay0u!1, which can be written as

max~z0 ,zc!!
zR

8Gc
,

one can expand the Bessel functions in a power serie
ay0. One then finds that the prefactord0 on the right-hand
side of Eq.~26! does not yield any exponential contributio
to the amplification. It follows that there is no diffractio
effect on the usual one-dimensional convective gainGconv
54Gctan21(z0 /zc) in this limit. For what concerns the an
gular divergence in the far-field zone, one obtains the t
following asymptotic results:~i! in the limit zR /(2GR)!z0
!zc one recovers the homogeneous result of Eq.~16!,
n

e
is

of

o

u15u0

1

~z0 /zR!3/2
A 3

4GR
,

and in the opposite limitz0@zc one finds

u15u0

1

~z0 /zR!1/2

~zR /zc!

A4GR

. ~28!

These results will be compared to those of the simpler cy
drical model, where any longitudinal dependence of the c
pling is neglected, in Sec. VIII.

B. z2ay0z@1: Reduction of the amplification
due to transverse effects

In the opposite limit

max~z0 ,zc!@
zR

8Gc
,

one can replace the Bessel functions by the leading term
their asymptotic expansion. A careful study of integral~25!
shows that the most important contribution comes from
vicinity of z52z0 for «521, and from the vicinity ofz
5max@2z0,2zc(GR/2)1/3# for «511. Accordingly, in the
case«511, the validity of Eq.~26! is limited to the domain

z0,zcS GR

2 D 1/3

. ~29!

The last condition that remains to be checked is that
radius of the backscattered beam is smaller than that of
pump beam in order for the parabolic approximation
exp(2r2/a0

2) to be valid. From Eqs.~25! and ~24!, one finds
that the region of the sources that contribute significantly
the backscattered beam is located at the entrance of th
teraction region and has a radius of (zc /k1)1/2uIm(z08)u

21/2.
On the other hand, from Eq.~26! one finds that the radius o
the backscattered beam at the end of the interaction regio
given by (zc /k1)1/2uRe(m0)u21/2.(zc /k1)1/2uIm(z0)u21/2.
Demanding that these radius be smaller thana0 and using the
relationzR5k1a0

2, one obtains the condition

zR

zc
min~ uIm~z08!u,uIm~z0!u!.1.

This inequality ceases to be satisfied either at the front s
@ uIm(z08)u,uIm(z0)#, or at the back side @ uIm(z08)u
.uIm(z0)# of the hot spot, depending on the sign of«. In
both cases it reads

S 2GczR

z0
D 1/2

sinFp4 2
1

2
tan21S z0

zc
D G

5S GRzc

z0
D 1/2F12S z0

2

zc
21z0

2D 1/2G 1/2

.1,

which reduces to Eq.~29! in the limit z0@zc . We therefore
conclude that in both cases«561 and in the limitz0@zc ,
the validity of Eq.~26! reduces to Eq.~29!.
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Unlike the first case VII A, there is now a diffraction e
fect on the usual one-dimensional convective gain due to
fact that the prefactord0 on the right-hand side of Eq.~26!
yields an exponential contribution to the amplification. In t
validity domain~29!, one finds that the convective gain fa
tor for the backscattered power is given by

Gconv54Gctan21S z0

zc
D24S 2Gczc

zR
D 1/2F S 11

z0
2

zc
2D 1/2

21G 1/2

.

~30!

It is worth noticing that expression~30! is the same for«5
61. On the other hand, since the local radius of the ba
scattered beam (zc /k1)1/2uRe(m0)u21/2 does depend on th
sign of «, one is led to the remarkable result that the ba
scattered powerPscat depends also on the sign of«. One
finds, namely,

Pscat~«511!

Pscat~«521!
5F112

z0
2

zc
2

12
z0

zc
S 11

z0

zc
D 1/2G21/2

, ~31!

which reduces tozc /(21/2z0)!1 in the limit z0@zc . We
have compared these analytical results to numerical solut
of Eq. ~22! and Eq.~20! @i.e., without expanding the Gauss
ian in Eq. ~21!# in which the instability grows from a con
stant boundary condition atz52z0 ~cf. Fig. 2!. It can be
seen that the dissymetry of the backscattered powe
slightly more pronounced when one keeps the Gaussian
pling @curve ~2!# as compared to our analytical predictio
This is due to the fact that the«521 backscattered beam
wider than the«511 one after the maximum amplificatio
region ~see the discussion at the end of this section!, which
leads to a slight underestimation ofPscat(«521) when one
replaces the Gaussian coupling by its quadratic approxi
tion.

FIG. 2. Dissymetry of the backscattered power as a function
the interaction half-lengthz0 ~normalized to the amplification
lengthzc), depending on the sign of the gradient in an inhomo
neous plasma. The thick line corresponds to the analytical resul
~31!. Curves~1! and ~2! correspond to numerical solutions to Eq
~22! and ~20! ~keeping the Gaussian coupling! respectively, with
Gc520 andzR /zc55. The vertical dashed line shows the limit o
validity ~29! of Eq. ~26! as explained in the text.
e
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The angular divergence of the backscattered beam in
far-field zone depends also on the sign of«. In the limit zc
!z0,zc(GR/2)1/3, one finds

u15u0A2GR
1/4S 2z0

zc
D «/4

. ~32!

This dependence on the sign of the inhomogeneity gra
ent can be explained in terms of propagation of the backs
tered light through a Gaussian duct@7#. Locally the plasma
can be regarded both as a Gaussian aperture acting like a
of imaginary focal lengthizc(11 z̃2)/Gc and an ordinary
lens of focal lengthf 5«zc(11 z̃2)/( z̃Gc). If «521, the
plasma acts as a converging lens (f .0) before the maxi-
mum amplification region (uz/zcu,1), and as a diverging
lens (f ,0) after the maximum amplification region~con-
versely if «511). The backscattered light produced befo
the maximum amplification region is therefore more conc
trated on the axis when it reaches this region, which
creases the reflectivity in this case. Since the situation
opposite for«511, the reflectivity is greater for«521
than for «511. After the maximum amplification region
the diverging effect (f ,0) widden the backscattered bea
in the «521 case. The radius of the backscattered beam
the end of the interaction region (z5z0) is thus less for«
511 than for«521, and, due to diffraction, the far-field
divergence atz@z0 is greater for«511 than for«521.
Figure 3 shows the backscattered beam width at the en
the interaction region as a function of the interaction leng

VIII. COMPARISON WITH THE CYLINDRICAL MODEL

It is interesting to compare the previous results with t
ones obtained in the case of a ‘‘cylindrical’’ hot spot
lengthL for which Eq.~4! is replaced by

ug0~x' ,z!u25H~L2/42z2!g2expF2
x'

2

a0
2G . ~33!

f

-
q.

FIG. 3. Backscattered beamwidth at the end of the interac
region in an inhomogeneous plasma as a function of the interac
half-lengthz0 ~normalized to the amplification lengthzc). Curves
labeled («)b correspond to the analytical results of Sec. VI depe
ing on the sign of«. Curves labeled («)a correspond to numerica
solutions to Eq.~20! ~keeping the Gaussian coupling!, the param-
eters are the same as in Fig. 2.
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The latter expression corresponds to the simple model c
sidered by Eliseevet al. @4# and Tikhonchuk, Mounaix, and
Pesme@5#. In this case the convective gainGconv is given by
Eqs. ~11! and ~12! in which 2 tan21(z0 /zR) is replaced by
L̃[L/zR , and the ratiou1 /u0 is given by Eq.~15! in which
one setsz050 and redefines the quantitiesa and f0 as a

5(2iGR)1/2 and f05aL̃. In the limit 1/(2L̃)!GR

!1/(2L̃2) one obtains

Gconv52GRL̃, ~34!

u15u0

1

L̃3/2
A 6

GR
, ~35!

and in the opposite limitGR@max@1/(2L̃),1/(2L̃2)#, one has

Gconv'2GRL̃S 12
1

AGR
D , ~36!

u15u021/2GR
1/4, ~37!

@i.e., one recovers the angular spreading~17! with z0
2!zR

2#.
These results are in agreement with those of Refs.@4# and@5#
obtained in the limit of a small interaction regionL!zR .

In the case of a homogeneous plasma, it can be seen
Eqs.~34!,~36!, and Eqs.~11!,~12! that one can easily obtai
the proper value of the convective gain of a Gaussian
spot by considering an ‘‘effective’’ cylindrical hot spot o
length L5Le f f[2zR tan21(z0 /zR). On the other hand, i
follows from Eqs.~35!,~37! and Eqs.~16!–~18! that the far-
field angular divergence of the backscattered light from t
effective cylindrical hot spot always overestimates the ac
angular spreading. In the case of a cylindrical hot spot,u1

saturates atu15u021/2GR
1/4.u0 ~cf. Fig. 4!, while in the case

of a Gaussian hot spot it saturates atu15u0GR
21/4, which is

less thanu0, for z0@zR(2GR)1/2. It is only if z0&zR that one
can properly estimate the far-field angular divergence of

FIG. 4. Backscattering far-field angular divergenceu1 ~normal-
ized to the angular spreading of the incident beamu0) as a function
of the interaction half-lengthz0 ~normalized to the Rayleigh lengt
zR) for GR55. The solid line corresponds to Eq.~15! in which the
z dependence of the hot spot intensity is kept. The dashed
corresponds to the ‘‘cylindrical model’’ result of Refs.@4# and@5#.
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backscattered light from a Gaussian hot spot by conside
an effective cylindrical hot spot of the same gain.

In the case of an inhomogeneous plasma, one canno
cover the exact value of the convective gain from an eff
tive cylindrical hot spot of length L5Le f f
[2zctan21(z0 /zc). Comparing Eq.~30! and the convective
gain given by the cylindrical model, one finds that the lat
gives a good approximation of Eq.~30! only if

21/2~A11z0
2/zc

221!1/2

tan21~z0 /zc!
.1,

which is fulfilled as long asz0 /zc<2.5 ~cf. Fig. 5!. It fol-
lows, in particular, that the cylindrical approximation brea
down in the limit of strongly inhomogeneous plasmas wh
one hasz0 /zc@1. For what concerns the far-field angul
divergence of the backscattered light, one has, in the stro
inhomogeneous plasma limitz0 /zc@1,

u1

u1cyl
5

p3/2

241/2

1

~z0 /zc!
1/2

.
1.14

~z0 /zc!
1/2

!1 ~38!

in the caseu2ay0u!1, where there is no diffraction effect o
the amplification~cf. Sec. VII A!, which corresponds to cas
I of Ref. @5#, and

u16

u1cyl
5S 2z0

zc
D 61/4

~39!

in the opposite limitu2ay0u@1 where diffraction effects re-
duce the amplification~cf. Sec. VII B!, which corresponds to
case II of Ref.@5#. In these equationsu1 andu16 are, respec-
tively, given by Eqs.~28! and ~32!, and u1cyl denotes the
angular spreading obtained from the cylindrical model
Ref. @5#. It can be seen that, in the strongly inhomogeneo
plasma limit z0 /zc@1, the cylindrical approximation doe
not yield the proper far-field angular divergence of the ba
scattered light~cf. Fig. 6!.

e

FIG. 5. Hot spot convective gain in the case of an inhomo
neous plasma as a function of the interaction half-lengthz0 ~nor-
malized to the amplification lengthzc). The solid line shows the
analytical result~30! in which thez dependence of the coupling i
kept. The dotted line is the cylindrical model result of Ref.@5#. The
dashed line corresponds to a numerical solution to Eq.~20! ~with
Gaussian coupling!; the parameters are the same as in Fig. 2.



te
o
a

th
th
s.
it
h

ve

W
te

li
nd
re
y
o

re

ng
ho
ti
h
st

el
n
u

ng
gl

be
/o

ob-
ous
nce
on-
in
ve
the
del
y

n-
ey

ga-
’s

o

ous

h

o

PRE 58 2469ANALYTICAL CALCULATION OF THE AMPLIFICATION . . .
IX. CONCLUSION

In this paper we have studied the problem of backscat
ing instabilities from a single laser hot spot in the frame
the paraxial approximation. We have performed an ex
analytical calculation of the convective gain factor and of
far-field angular divergence of the backscattered light in
two cases of homogeneous and inhomogeneous plasma

In the case of homogeneous plasmas, where the long
dinal dependence of the coupling reduces to that of the
spot intensity, we have obtained expressions for the con
tive gain factor that generalize those of Eliseevet al. @4# to
the case of an arbitrary value of the interaction length.
have shown that the far-field angular divergence is de
mined not only by the amplificationwithin the hot spot but
also by the propagation of the backscattered lightbehindthe
amplification region, where the hot spot intensity is neg
gible for what concerns the amplification. We have fou
that the far-field angular divergence of the backscatte
light computed at the end of the interaction region is alwa
less than what it would be if it was computed at the end
the amplification region. For a long enough interaction
gion, namely, forz0 /zR.21/2GR

1/4 with GR@1, it is even
found to belessthan the pump divergence.

In the case of inhomogeneous plasmas, where the lo
tudinal dependence of the coupling is only due to the in
mogeneity, we have obtained expressions for the convec
gain factor and for the far field angular divergence of t
backscattered light. In the limit of practical intere
max(z0,zc)@zR(8Gc)

21, with z0,zc(GR/2)1/3, Gc@1, and
GR@1, we have found that both the power and the far-fi
angular divergence of the backscattered beam depend o
sign of the inhomogeneity gradient. This remarkable res
follows from focusing or defocusing optical effects occuri
outside the resonance region, where the coupling is ne
gible for what concerns the amplification.

It is worth mentioning that all these results should
taken into account in the interpretations of numerical and
experimental far-field images of the backscattered beam

FIG. 6. Backscattering far-field angular divergenceu1 ~normal-
ized to the angular spreading of the incident beamu0) in an inho-
mogeneous plasma, as a function of the interaction half-lengtz0

~normalized to the amplification lengthzc). The solid and dashed
lines corresponds to the analytical result~27! for «511 and«5
21, respectively. The dotted line is the cylindrical model result
Ref. @5#. The parameters are the same as in Fig. 2.
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terms of its near-field structure.
We have then compared our results to previous ones

tained in the case of a cylindrical hot spot. For homogene
plasmas, we have found that the far-field angular diverge
of the backscattered light can be properly estimated by c
sidering an effective cylindrical hot spot of the same gain
the limit z0&zR only. For inhomogeneous plasmas, we ha
found that the cylindrical model always overestimates
on-axis linear convective gain factor, and that this mo
breaks down in the limitz0@zc where the plasma is strongl
inhomogeneous.
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APPENDIX: DERIVATION
OF THE GREEN’S FUNCTIONS

In this appendix we show how to calculate the propa
tors ~7! and ~24!. The problem reduces to find the Green
function G(x' ,z,x'8 ,z8) defined as the retarded solution t

F ]z2
i

2k1
¹'

2 1
1

l G

x'
2

a0
2

q~z!2GG~x' ,z,x'8 ,z8!50, ~A1!

with limz→z8G(x' ,z,x'8 ,z8)5d2(x'2x'8 ). Following the
method of Ref.@6#, one has

G~x' ,z,x'8 ,z8!5
k1

2ip f
expF ik1

2 f
~ ḟ x'

2 22x'•x'8 1gx'8
2!G ,
~A2!

where dot meansz derivative and the functionsf andg are
solutions to

f̈ 5
2i

l GzR
q~z!2f ,

f ~z8!50,

ḟ ~z8!51,

and

g̈5
2i

l GzR
q~z!2g,

g~z8!51,

ġ~z8!50,

with zR[k1a0
2.

1. Gaussian hot spot in a homogeneous plasma

In the case of a Gaussian hot spot in a homogene
plasma considered in Sec. III, one hasq(z)5@1

f
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1(z/zR)2#21 and l G5V1(n22 iv)/g2. It is then useful to
write f andg as exp*zk(z8)dz8, which yields a Riccati equa
tion for k,

k̇1k25
2i

l GzR
q~z!2.

Inserting the expression ofq(z) into this equation and trying
k(z)5(a1bz)/@11(z/zR)2#, one obtains the equation

S a21b2
2i

l GzR
D12aS b2

1

zR
2 D z1bS b2

1

zR
2 D z250,

the solution to which reads

a56a/zR ,

b51/zR
2 ,

with a[(2izR / l G21)1/2. One has, therefore,

k~z!5
1

zR

z/zR

11~z/zR!2
6

a

zR

1

11~z/zR!2
,

and from the boundary conditions forf and g, one obtains
straightforwardly

f 5~zR /a!A11~z/zR!2A11~z8/zR!2 sinh~f!,
~A3a!

ḟ 5
A11~z8/zR!2

A11~z/zR!2 Fcosh~f!1
z

azR
sinh~f!G , ~A3b!
p-
g5
A11~z/zR!2

A11~z8/zR!2Fcosh~f!2
z8

azR
sinh~f!G , ~A3c!

where f[a@ tan21(z/zR)2tan21(z8/zR)#. Inserting Eqs.
~A3! into Eq.~A2! gives the solution to Eq.~6!, which yields
the full propagator~7!.

2. Cylindrical hot spot in a inhomogeneous plasma

In the case of a cylindrical hot spot in a inhomogeneo
plasma considered in Sec. VI, one hasq(z)5@11 i («z/zc
2v/n2)#21/2, l G5V1n2 /g2, and the equation forf and g
reads

F11 i S «
z

zc
2

v

n2
D G ḧ2

2i

l GzR
h50, ~A4!

whereh denotesf or g. This equation can be solved explic
itely in terms of ordinary Bessel functions. Definingy
5q(z), y85q(z8), and taking into account the bounda
conditions forf andg, one obtains

f 5 izcp«yy8@Y1~2ay8!J1~2ay!2J1~2ay8!Y1~2ay!#,
~A5a!

ḟ 5apy8@Y0~2ay!J1~2ay8!2J0~2ay!Y1~2ay8!#,
~A5b!

g5apy@Y0~2ay8!J1~2ay!2J0~2ay8!Y1~2ay!#,
~A5c!

wherea5(2iGczc /zR)1/2. Inserting Eqs.~A5! into Eq. ~A2!
gives the solution to Eq.~23!, which yields the full propaga-
tor ~24!.
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